Insulin receptor-independent upregulation of cellular glucose uptake
نویسندگان
چکیده
منابع مشابه
E4orf1 Enhances Glucose Uptake Independent of Proximal Insulin Signaling
Impaired proximal insulin signaling is often present in diabetes. Hence, approaches to enhance glucose disposal independent of proximal insulin signaling are desirable. Evidence indicates that Adenovirus-derived E4orf1 protein may offer such an approach. This study determined if E4orf1 improves insulin sensitivity and downregulates proximal insulin signaling in vivo and enhances cellular glucos...
متن کاملActivation of Estrogen Receptor Is Crucial for Resveratrol-Stimulating Muscular Glucose Uptake via Both Insulin-Dependent and -Independent Pathways
OBJECTIVE Estradiol (E(2)) is known to modulate insulin sensitivity and, consequently, glucose homeostasis. Resveratrol (RSV), an agonist of estrogen receptor (ER), has exerted antihyperglycemic effects in streptozotocin-induced type 1 diabetic rats in our previous study and was also shown to improve insulin resistance in other reports. However, it remains unknown whether activation of ER is in...
متن کاملCold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway.
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) participates in control of expression of genes involved in adaptive thermogenesis, muscle fiber type differentiation, and fuel homeostasis. The objective of the present study was to evaluate the participation of cold-induced PGC-1alpha expression in muscle fiber type-specific activity of proteins that belong to the...
متن کاملRho GTPases in insulin-stimulated glucose uptake
Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistributi...
متن کاملDual Actions of Apolipoprotein A-I on Glucose-Stimulated Insulin Secretion and Insulin-Independent Peripheral Tissue Glucose Uptake Lead to Increased Heart and Skeletal Muscle Glucose Disposal.
Apolipoprotein A-I (apoA-I) of HDL is central to the transport of cholesterol in circulation. ApoA-I also provides glucose control with described in vitro effects of apoA-I on β-cell insulin secretion and muscle glucose uptake. In addition, apoA-I injections in insulin-resistant diet-induced obese (DIO) mice lead to increased glucose-stimulated insulin secretion (GSIS) and peripheral tissue glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Obesity
سال: 2012
ISSN: 0307-0565,1476-5497
DOI: 10.1038/ijo.2012.6